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Abstract— Multiple kernel clustering (MKC) is committed
to achieving optimal information fusion from a set of base
kernels. Constructing precise and local kernel matrices is proven
to be of vital significance in applications since the unreliable
distant–distance similarity estimation would degrade cluster-
ing performance. Although existing localized MKC algorithms
exhibit improved performance compared with globally designed
competitors, most of them widely adopt the KNN mechanism
to localize kernel matrix by accounting for τ -nearest neighbors.
However, such a coarse manner follows an unreasonable strategy
that the ranking importance of different neighbors is equal, which
is impractical in applications. To alleviate such problems, this
article proposes a novel local sample-weighted MKC (LSWMKC)
model. We first construct a consensus discriminative affinity
graph in kernel space, revealing the latent local structures.
Furthermore, an optimal neighborhood kernel for the learned
affinity graph is output with naturally sparse property and
clear block diagonal structure. Moreover, LSWMKC implicitly
optimizes adaptive weights on different neighbors with corre-
sponding samples. Experimental results demonstrate that our
LSWMKC possesses better local manifold representation and
outperforms existing kernel or graph-based clustering algo-
rithms. The source code of LSWMKC can be publicly accessed
from https://github.com/liliangnudt/LSWMKC.

Index Terms— Graph learning, localized kernel, multiview
clustering, multiple kernel learning.

I. INTRODUCTION

CLUSTERING is one of the representative unsupervised
learning techniques widely employed in data mining and

machine learning [1]–[6]. As a popular algorithm, k-means has
been well investigated [7]–[9]. Although achieving extensive
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applications, k-means assumes that data can be linearly sepa-
rated into different clusters [10]. By employing kernel tricks,
the nonlinearly separable data are embedded into a higher
dimensional feature space and become linearly separable.
As a consequence, kernel k-means (KKM) is naturally devel-
oped for handling nonlinearity issues [10], [11]. Moreover,
to encode the emerging data generated from heterogeneous
sources or views, multiple kernel clustering (MKC) provides
a flexible and expansive framework for combining a set of
kernel matrices since different kernels naturally correspond to
different views [12]–[18]. Multiple KKM (MKKM) [19] and
various variants are further developed and widely employed
in many applications [15], [16], [20]–[23].

Most of the kernel-based algorithms follow a common
assumption that all the samples are reliable to exploit the
intrinsic structures of data, and thus, such a globally designed
manner equally calculates the pairwise similarities of all
samples [15]–[17], [20], [21], [24], [25]. Nevertheless, in a
high-dimensional space, this assumption is incompatible with
the well-acknowledged theory that the similarity estimation
for distant samples is less reliable on account of the intrinsic
manifold structures are highly complex with curved, folded,
or twisted characteristics [26]–[29]. Furthermore, researchers
have found that preserving reliable local manifold structures
of data could achieve better effectiveness than globally pre-
serving all the pairwise similarities in unsupervised tasks and
can achieve better clustering performance, such as dimension
reduction [30]–[33] and clustering [34], [35].

Therefore, many approaches are proposed to localize ker-
nels to enhance discrimination [36]–[40]. The work in [36]
develops a localized kernel maximizing alignment method that
merely aligns the original kernel with τ -nearest neighbors of
each sample to the learned optimal kernel. Along this way, the
KNN mechanism is introduced to kernel-based subspace seg-
mentation [38]. Moreover, a recently proposed simple MKKM
method [24] with min–max optimization is also localized in
the same way to consider local structures [40]. Besides, such a
localized manner also has been extended to handle incomplete
data [37]. Although showing improved performance, most
traditional localized kernel methods adopt the simple KNN
mechanism to select neighbors.

As can be seen in Fig. 1(a) and (b), previous localized MKC
methods with the KNN mechanism encounter two issues:
1) these methods follow the common assumption that all the
neighbors are reliable without considering their variation and
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Fig. 1. Illustration of (a) original average kernel, (b) localized average
kernel in KNN mechanism by carefully tuning τ within [0.1, 0.2, . . . , 0.9]
and present the optimal results (τ = 0.1), and (c) localized kernel learned by
proposed model on Mfeat dataset.

ranking relationship. However, it is incompatible with common
knowledge that the neighbors of a sample are adaptively
varied, and some may have been corrupted by noise or out-
liers. For instance, in social networking, a closer relationship
means more essential and vice versa. 2) The KNN mechanism
introduces a hyperparameter neighbor ratio, which is fixed
for each sample and commonly predetermined empirically.
Apart from this unreasonable fixed neighbor ratio, it incurs
dataset-related parameter-tuning in a wide range to obtain
satisfying clustering results. From experimental results, we can
observe that the KNN mechanism still preserves apparent noise
compared with the original average kernel.

To alleviate these problems, we start our work with a
natural thought that adaptively assigns a reasonable weight to
each neighbor according to its ranking importance. However,
there is no sufficient prior knowledge in kernel space to
identify the ranking relationship among neighbors. Owing
to the remarkable performance in exploring the complex
nonlinear structures of various data, developing graph-based
methods is greatly popular with scholars [27], [41]–[56].
Considering kernel matrix can be regarded as affinity graph
with additional positive semidefinite (PSD) constraint, it is
practicable and more flexible to learn a discriminative affin-
ity graph with naturally sparsity and clear block diagonal
structures [41], [43], [47], [57].

Based on the above-mentioned motivation and our inspi-
ration from graph learning [41], [47], [48], [51], [57], [58],
we develop a novel local sample-weighted MKC with consen-
sus discriminative graph method (LSWMKC). Instead of using
the KNN mechanism to localize the kernel matrix without
considering the ranking importance of neighbors, we first learn
a consensus discriminative affinity graph across multiple views
in kernel space to reveal the latent manifold structures, and
further heuristically learn an optimal neighborhood kernel.
As Fig. 1(c) shows, the learned neighborhood kernel is natu-
rally sparse with clear block diagonal structures. We develop
an efficient iterative algorithm to simultaneously learn weights
of base kernels, discriminative affinity graph, and localized
consensus neighborhood kernel. Instead of empirically tun-
ing or selecting a predefined neighbor ratio, our model can
implicitly optimize adaptive weights on different neighbors
with corresponding samples. Extensive experiments demon-
strate that the learned neighborhood kernel can achieve clear
local manifold structures, and it outperforms localized MKC
methods in the KNN mechanism and other existing models.
We briefly summarize the main contributions as follows:

1) A novel local sample-weighted MKC algorithm is pro-
posed based on kernelized graph learning, which can
implicitly optimize adaptive weights on different neigh-
bors with corresponding samples according to their
ranking importance.

2) We learn an optimal neighborhood kernel with more
discriminative capacity by further denoising the graph,
revealing the latent local manifold representation in
kernel space.

3) We conduct extensive experimental evaluations
on 12 MKC benchmark datasets compared with the
existing 13 methods. Our proposed LSWMKC shows
apparent effectiveness over localized MKC methods in
the KNN mechanism and other existing methods.

II. BACKGROUND

This section introduces MKC and traditional KNN-based
localized MKC methods.

A. Multiple Kernel k-Means

For a data matrix X ∈ R
d×n , including n samples with

d-dimensional features from k clusters, nonlinear feature map-
ping ψ(·) : R

d �→ H achieves the transformation from sample
space R

d to a reproducing kernel Hilbert space (RKHS)
H [59]. Kernel matrix K is computed by

Ki j = κ
�
xi , x j

� = ψ(xi)
�ψ

�
x j

�
(1)

where κ(·, ·) : R
d × R

d �→ R denotes a PSD kernel function.
k-means is to minimize the clustering loss, that is,

min
S

n�
i=1

k�
q=1

Siq�xi − cq�2
2, s.t.

k�
q=1

Siq = 1 (2)

where S ∈ {0, 1}n×k denotes the indicator matrix, cq denotes
the centroid of q-th cluster and nq = �n

i=1 Siq denotes the
corresponding amount of samples. To deal with nonlinear
features, the samples are mapped into RKHS H. KKM is
formulated as

min
H

Tr
�
K

�
In − HH���

, s.t. H�H = Ik (3)

where partition matrix H ∈ R
n×k is computed by taking rank-

k eigenvectors of K and then exported to k-means to compute
the final results [10], [11].

For multiple kernel learning scenarios, x can be represented
as ψω(x) = [ω1ψ1(x)�, ω2ψ2(x)�, . . . , ωmψm(x)�]�, where
ω = [ω1, . . . , ωm ]� denotes the coefficients of m base kernel
functions {κp(·, ·)}m

p=1. κω(·, ·) is expressed as

κω

�
xi , x j

� = ψω(xi)
�ψω

�
x j

� =
m�

p=1

ω2
pκp

�
xi , x j

�
. (4)

The objective of MKKM is formulated as

min
H,ω

Tr
�
Kω

�
In − HH���

s.t. H ∈ R
n×k, H�H = Ik, ωp ≥ 0 ∀p (5)

where the consensus kernel Kω = �m
p=1 ω

2
pKp is commonly

assumed as a combination of base kernels Kp. To control the
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contribution of different kernels, there are some strategies on
ω, such as “kernel affine weight strategy” [51], “autoweighted
strategy” [43], [48], and “sum-to-one strategy” [40]. Accord-
ing to [19], (5) can be solved by alternatively optimizing ω

and H.

B. Construction of Localized Kernel in KNN Mechanism

Most kernel-based methods assume that all the samples
are reliable and calculate fully connected pairwise similarity.
However, as pointed out in [26]–[29] and [60], the similarity
estimation of distant–distance samples in high-dimensional
space is unreliable. Many localized kernel-based works have
been developed to alleviate this problem [36], [40], [61].
Commonly, the localized kernel is constructed in the KNN
mechanism.

The construction of a localized kernel mainly includes
two steps, i.e., neighbor searching and localized kernel con-
struction. First, in average kernel space, the neighbors of
each sample are identified by labeling its τ -nearest samples.
Denoting the neighbor mask matrix as N ∈ {0, 1}n×n. The
neighbor searching is defined as follows:

Ni j =
�

1, x j ∈ KNN(xi),

0, otherwise
(6)

where j denotes the neighbor index of i -th sample. For each
row, there are round(τn) elements are labeled as neigh-
bors, where neighbor ratio τ is commonly predetermined
empirically and carefully tuned by grid search, such as τ
varies within [0.1, 0.2, . . . , 0.9], and finally, obtain the optimal
clustering results. If we set neighbor ratio τ = 1, the
KNN structure will be full-connected. For the precomputed
base kernels Kp, the corresponding localized kernel Kp(l) is
formulated as

Kp(l) = N 	 Kp (7)

where 	 is the Hadamard product.
Although the traditional KNN mechanism to localize ker-

nel is simple and has improved performance than globally
designed methods, this manner neglects a critical issue the
variation of neighbors. Therefore, it is important and practical
to assign reasonable weights to different neighbors accord-
ing to their ranking relationship. Another issue is that the
initial neighbor ratio τ of each sample is usually fixed and
predetermined empirically and needs to be tuned to report
the best clustering result. As Fig. 1(a) and (b) shows, the
obtained localized kernels preserve much noise, which will
incur degeneration of clustering performance.

III. METHODOLOGY

This section presents our proposed LSWMKC in detail
and provides an efficient three-step optimization solution.
Moreover, we analyze convergence, computational complexity,
limitation, and extensions.

A. Motivation

From our aforementioned analysis of the traditional local-
ized kernel method in the KNN mechanism, we find that:

1) This seemingly simple method neglects the ranking impor-
tance of the neighbors, which may degrade the clustering per-
formance due to the impact of the unreliable distant–distance
relationship. 2) The neighbor ratio is commonly predetermined
empirically and needs to be tuned to report the best results.

The above-mentioned issues inspire us to rethink the
manner of constructing localized MKC, and a natural
motivation is to exploit their ranking relationship and assign
a reasonable weight to each neighbor. However, there is no
sufficient prior knowledge in kernel space to identify the
ranking importance of neighbors. In recent years, graph-
based algorithms have been greatly popular with scholars
to explore the nonlinear structures of data. An ideal affinity
graph exhibits two good properties: 1) clear block diagonal
structures with k connected blocks, each corresponding to one
cluster. 2) The affinity represents the similarity of pairwise
samples, and the intracluster affinities are nonzero, while the
extra-cluster affinities are zeros. Considering the kernel matrix
can be regarded as the affinity graph with additional PSD
constraint, a discriminative graph can reveal the latent local
manifold representation in kernel space. These issues inspire
us to exploit the capacity of graph learning in capturing
nonlinear structures of kernel space.

B. Proposed Formula

Here, we briefly introduce the affinity graph learning
method, which will be the base of our proposed model.

For sample set {x1, . . . , xn}, it is desirable to learn an
affinity graph Z ∈ R

n×n with distinct distance �xi − x j�2
2

corresponding to small similarity zi j , which is formulated as

min
Z

n�
i, j=1

��xi − x j

��2
2zi j + γ z2

i j

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0 (8)

where γ is a hyperparameter, Zi,:1n = 1 is for normalization,
zi j ≥ 0 is to ensure the nonnegative property, and zii = 0 can
avoid trivial solutions. Commonly, the second term �2 norm
regularization is to avoid undesired trivial solutions [42], [62].

However, the existing graph-based methods are developed
in sample space R

d , rather than RKHS H kernel space,
significantly limiting their applications. To fill this gap and
exploit their potent capacity to capture nonlinear structures in
kernel space, by using kernel tricks, the first term of (8) can
be extended as

min
Z

n�
i, j=1

�ψ(xi )− ψ(x j )�2
2zi j

= min
Z

n�
i, j=1

(ψ(xi )
�ψ(xi )−2ψ(xi)

�ψ(x j )+ψ(x j)
�ψ(x j ))zi j

= min
Z

n�
i, j=1

(κ(xi , xi)− 2κ(xi, x j)+ κ(x j, x j ))zi j

= min
Z

2n −
n�

i, j=1

2κ(xi, x j )zi j ⇔ min
Z

n�
i, j=1

−κ(xi, x j)zi j

s.t. Zi,:1n = 1, zi j ≥ 0, zii = 0. (9)
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Note that the condition for (9) is that we assume
κ(xi, xi ) = 1. However, it is not always valid for all the kernel
functions. A common choice is the Gaussian kernel which
satisfies κ(xi , xi) = 1. The present work utilizes this manner or
directly downloads the public kernel datasets. Moreover, all the
base kernels are first centered and then normalized following
[63] and [64], which further guarantees κ(xi , xi) = 1.

We have the following insights from the kernelized affinity
graph learning model: 1) compared with using �xi − x j�2

2 to
estimate the pairwise distance in sample space, we should
adopt −κ(xi, x j) in kernel space. 2) Such compact form
achieves affinity graph learning in kernel space to explore the
complex nonlinear structures.

In multiple kernel learning scenarios, it is commonly
assumed that the ideal kernel is optimally combined by given
base kernels, and (9) can be extended as

min
Z,ω

m�
p=1

n�
i, j=1

−ωpκp(xi , x j)zi j + γ z2
i j

s.t.

�
Zi,:1n = 1, zi j ≥ 0, zii = 0�m

p=1 ω
2
p = 1, ωp ≥ 0

(10)

where ωp is the weight of p-th base kernel. Since using�m
p=1 ω = 1 will only activate the best kernel, and it incurs

the multi-kernel scenario degraded into the undesirable single-
kernel scenario. We employ the squared �2 norm constraint of
ωp to smooth the weights and avoid the sparse trivial solution.
Other weight strategies can refer to [43], [48], and [51].
The above-mentioned formula achieves multiple kernel-based
graph learning by jointly optimizing kernel weights and
consensus affinity graph. Specifically, the learned consensus
discriminative graph reveals kernel space’s intrinsic local
manifold structures by graph learning mechanism and fuses
latent clustering information across multiple kernels by weight
learning mechanism.

Recall we aim to estimate the ranking relationship of
neighbors with corresponding samples in kernel space. The
above-mentioned discriminative consensus graph inspires us to
further learn an optimal neighborhood kernel, which obtains a
consensus kernel with naturally sparse properties and precise
block diagonal structures. This idea can be naturally modeled
by minimizing squared F-norm loss �K∗−Z�2

F with constraints
K∗ � 0 and K∗ = K∗�. We define the optimization goal as
follows:

min
Z,K∗,ω

−Tr

⎛
⎝ m�

p=1

ωpKpZ�
⎞
⎠ + �G 	 Z�2

F + α�K∗ − Z�2
2

s.t.

⎧⎪⎨
⎪⎩

Z1n = 1n, Z ≥ 0, Zii = 0

K∗ � 0, K∗ = K∗�,
m�

p=1

ω2
p = 1, ωp ≥ 0

(11)

where G = 1�
n ⊗ γ , γ = (

√
γ1,

√
γ2, . . . ,

√
γn)

� denotes
hyperparameter γi with corresponding i -row of Z, ⊗ is outer
product, 	 is the Hadamard product, and α is the balanced
hyperparameter for neighborhood kernel construction.

Note that n hyperparameters γ corresponding to n rows of Z
respectively, which is due to the following considerations: 1) as

our analysis in (10), reasonable hyperparameters γ can avoid
trivial solutions, i.e., γ → 0 or γ → ∞ will incur undesired
extremely sparse or dense affinity matrix, respectively. 2)
Section III-C2 also illustrates the subproblem of optimizing Z
involves n-row formed independent optimization. It is reason-
able to assign different γi to each problem, considering their
variations. Such issues inspire us to learn reasonable γ instead
of empirical and time-consuming parameter tuning. We derive
a theoretical solution in Section III-D and experimentally
validate the ablation study on tuning γ by grid search in
Section IV-J.

From the above-mentioned formula, our proposed
LSWMKC model jointly optimizes the kernel weights, the
consensus affinity graph, and the consensus neighborhood
kernel into a unified framework. Although the formula is
straightforward, LSWMKC has the following merits: 1) it
addresses localized kernel problems via a heuristic manner,
rather than the traditional KNN mechanism, which achieves
implicitly optimizing adaptive weights on different neighbors
with corresponding samples according to their ranking
relationship. 2) Instead of tuning hyperparameter γ by grid
search, we propose an elegant solution to predetermine it. 3)
More advanced graph learning methods in kernel space can
be easily introduced to this framework.

C. Optimization

Simultaneously optimizing all the variables in (11) is dif-
ficult since the optimization objective is not convex. This
section provides an effective alternate optimization strategy by
optimizing each variable with others been fixed. The original
problem is separated into three subproblems such that each
one is convex.

1) Optimization ωp With Fixed Z and K∗: With fixed Z and
K∗, the objective in (11) is formulated as

max
ω

m�
p=1

ωpδp, s.t.
m�

p=1

ω2
p = 1, ωp ≥ 0 (12)

where δp = Tr(KpZ�). This problem could be easily solved
with closed-form solution as follows:

ωp = δp��m
p=1 δ

2
p

. (13)

The computational complexity is O(mn2).
2) Optimization Z With Fixed K∗ and ωp: With fixed K∗

and ωp, (11) is transformed to n subproblems, and each one
can be independently solved by

min
Zi,:

(γi + α)Zi,:Z�
i,: −

⎛
⎝2αK∗

i,: +
m�

p=1

ωpKp[i,:]

⎞
⎠Z�

i,:

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (14)

where Kp[i,:] denotes the i -th row of the p-th base kernel.
Furthermore, (14) can be rewritten as quadratic program-

ming (QP) problem

min
Zi,:

1

2
Zi,:AZ�

i,: + ei Z�
i,:

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (15)
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where A = 2(γi +α)In, ei = −(2αK∗
i,:+

�m
p=1 ωpKp[i,:]). The

global optimal solution of QP problem can be easily solved
by the toolbox of MATLAB. Since Zi,: is a n-dimensional row
vector, the computational complexity of (15) is O(n3 + mn)
and the total complexity is O(n4 + mn2).

Furthermore, (15) can be simplified as

min
Zi,:

1

2

��Zi,: − Ẑi,:
��2

2

s.t. Zi,:1n = 1, Zi,: ≥ 0, Zii = 0 (16)

where Ẑi,: = −(ei/(2(α + γi))).
Mathematically, the following Theorem 1 illustrates that the

solution of (16) can be analytically solved.
Theorem 1: The analytical solution of (16) is as follows:

Zi,: = max
�
Ẑi,: + βi 1�

n , 0
�
, Zii = 0 (17)

where βi can be solved by Newton’s method efficiently.
Proof: For i -th row of Z, the Lagrangian function of (16)

is as follows:
L�

Zi,:, βi , ηi

� = 1

2

��Zi,: − Ẑi,:
��2

2 − βi
�
Zi,:1n − 1

� − ηi Z
�
i,:
(18)

where scalar βi and row vector ηi are Lagrangian multipliers.
According to the KKT condition�

Zi,: − Ẑi,: − βi 1�
n − ηi = 0�

ηi 	 Zi,: = 0�.
(19)

We have

Zi,: = max
�
Ẑi,: + βi 1�

n , 0
�
, Zii = 0. (20)

Note that Zi,:1n increases monotonically with respect to
βi according to (20), βi can be solved by Newton’s method
efficiently with the constraint Zi,:1n = 1. This completes the
proof.
By computing the closed-formed solution, the computational
complexity of (15) is reduced to O(mn), which is mainly from
computing ei . The total complexity is O(mn2).

3) Optimization K∗ With Fixed Z and ωp: With fixed Z and
ωp, the original objective (11) can be converted to

min
K∗

��K∗ − Z
��2

F

s.t. K∗ � 0, K∗ = K∗�. (21)

However, this seemingly simple subproblem is hard to be
directly solved. Theorem 2 provides an equivalent solution.

Theorem 2: The optimization in (21) has the same solution
as (22)

min
K∗

����K∗ − 1

2
(Z + Z�)

����
2

F

s.t. K∗ � 0, K∗ = K∗�. (22)

Proof: According to the PSD property of K∗, we can
derive that the original optimization objective �K∗ − Z�2

F
in (21) is equivalent to �K∗ − Z��2

F. Therefore, the solution
of (21) is the same as (22). This completes the proof.

According to Theorem 2, supposing the eigenvalue decom-
position result of (Z + Z�)/2 is UZ�ZU�

Z . The optimal K∗

can be easily obtained by imposing K∗ = UZ�U�
Z , where

� = max(�Z, 0). Note that the learned K∗ can further denoise
the Z from the above-mentioned optimization. Once we obtain
K∗, it is exported to KKM to calculate the final results.

D. Initialize the Affinity Graph Z and Hyperparameter γi

For graph-based clustering methods, the performance is sen-
sitive to the initial affinity graph. A bad graph construction will
degrade the overall performance. For the proposed algorithm,
we aim to learn a neighborhood kernel K∗ of the consensus
affinity graph Z. This section proposes a strategy to initialize
the affinity matrix Z and the hyperparameter γi .

Recalling our objective in (11), a sparse discriminative
affinity graph is preferred. Theoretically, by constraining γi

within reasonable bounds, Z will be naturally sparse. The c
nonzero values of Zi,: denotes the affinity of each instance
corresponding to its initialized neighbors. Therefore, with all
the other parameters fixed, we learn an initialized Z with the
maximal γi . Based on our objective in (11), by constraining
the �0-norm of Zi,: to be c, we solve the following problem:

max
γi

γi , s.t. �Zi,:�0 = c. (23)

Recall the subproblem of optimizing Z in (16), its equivalent
form can be written as follows:

min
Zi,:1n=1, Zi,:≥0, Zii =0

1

2

����Zi,: + ei

2(α + γi)

����
2

2

(24)

where ei = −(2αK∗
i,: + �m

p=1 ωpKp[i,:]). The Lagrangian
function of (24) is

L�
Zi,:, ζ,λi

� = 1

2

����Zi,: + ei

2(α + γi)

����
2

2

−ζ �Zi,:1n − 1
� − λi Z�

i,:

(25)

where scalar ζ and row vector λi ≥ 0� denote the Lagrange
multipliers. The optimal solution Z∗

i,: satisfy that the derivative
of (25) equal to zero, that is,

Z∗
i,: +

ei

2(α + γi )
− ζ1�

n − λi = 0�. (26)

For the j -th element of Z∗
i,:, we have

z∗
i j + ei j

2(α + γi)
− ζ − λi j = 0. (27)

According to the KKT condition that zi jλi j = 0, we have

z∗
i j = max

�
− ei j

2(α + γi)
+ ζ, 0

�
. (28)

To construct a sparse affinity graph with c valid neigh-
bors, we suppose each row ei1, ei2, . . . , ein are ordered in
ascending order. Naturally, eii ranks first. Considering Zii =
0, the invalid eii should be neglected since the similarity
with itself is useless. That is Zi,2,Zi,3, . . . ,Zi,c+1>0 and
Zi,c+2,Zi,c+3, . . . ,Zi,n = 0, we further derive

− ei,c+1

2(α + γi)
+ ζ > 0, − ei,c+2

2(α + γi)
+ ζ ≤ 0. (29)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 07,2024 at 15:34:14 UTC from IEEE Xplore.  Restrictions apply. 



1726 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2024

According to (28) and constraint Zi,:1n = 1, we obtain

c+1�
j=2

�
− ei j

2(α + γi)
+ ζ

�
= 1. (30)

ζ is formulated as

ζ = 1

c
+ 1

2c(α + γi)

c+1�
j=2

ei j . (31)

Therefore, we have

c

2
ei,c+1 − 1

2

c+1�
j=2

ei j − α < γi ≤ c

2
ei,c+2 − 1

2

c+1�
j=2

ei j − α.

(32)

According to the aforementioned derivation, to satisfy
�Z∗

i,:�0 = c, the maximal γi is as follows:

γi = c

2
ei,c+2 − 1

2

c+1�
j=2

ei j − α. (33)

In the meantime, the initial z∗
i j is as follows:

z∗
i j =

⎧⎨
⎩

ei,c+2 − ei, j+1

cei,c+2 − �c+1
h=2 eih

, j ≤ c

0, j > c.
(34)

From the above-mentioned analysis, we initialize a sparse
discriminative affinity graph with each row having c nonzero
values and derive the maximal γi . Note that (32) involves
an undesired hyperparameter α, to get rid of its impact,
we directly impose α = 0. Once the initial γi are computed,
these coefficients will remain unchanged during the iteration.
According to the initialization, we have the following obser-
vations: 1) the construction is simple with basic operations,
but can effectively initialize a sparse discriminative affinity
graph with block-diagonal structures, contributing to the sub-
sequent learning process. 2) The hyperparameter γi can be
predetermined to avoid the undesired tuning by grid search.
3) Initializing the affinity graph involves a parameter, i.e., the
number of neighbors c. For most cases, 5 ≤ c ≤ 10 is likely
to achieve reasonable results and c is fixed at 5 in this work.

E. Analysis and Extensions

1) Computational Complexity: According to the aforemen-
tioned alternate optimization steps, the computational com-
plexity of our LSWMKC model includes three parts. Updating
ωp in (12) needs O(mn2) to obtain the closed-form solution.
When updating Z, the complex QP problem in (15) is trans-
formed into an equivalent closed-form solution in (16) whose
computational complexity is O(mn2). Updating K∗ in (22)
needs O(n3) cost by eigenvalue decomposition. Commonly,
n � m, the total computational complexity of our LSWKMC
is O(n3) in each iteration.

For the postprocessing of K∗, we perform KKM to obtain
the clustering partition and labels whose computational com-
plexity is O(n3). Although the computational complexity of
our LSWMKC algorithm is the same as the compared mod-
els [14]–[16], [19], [24], [36], [40], [48], [51], its clustering

Algorithm 1 LSWMKC
Input: Base kernel matrices {Kp}m

p=1, clusters k,
neighbors c, hyperparameter α.

Initialize: Z by (34); K∗ = �m
p=1 ωpKp; γi by (33);

ωp = √
1/m.

while not converged do
Compute ωp according to (12);
Compute Z according to (16);
Compute K∗ according to (22);

end
Output: Perform kernel k-means on K∗.

performance exhibits significant improvement, as reported in
Section IV-D.

2) Convergence: Jointly optimizing all the variables in (11)
is problematic since our algorithm is nonconvex. Instead,
as Algorithm 1 shows, we adopt an alternate optimization
manner, and each of the subproblems is strictly convex. For
each subproblem, the objective function decreases monoton-
ically during iteration. Consequently, as pointed out in [65],
the proposed model can theoretically obtain a local minimum
solution.

3) Limitation and Extension: The proposed model provides
a heuristic insight into the localized mechanism in kernel
space. Nevertheless, we should emphasize the promising per-
formance obtained at the expense of O(n3) computational
complexity, which limits wide applications in large-scale clus-
tering. Introducing more advanced and efficient graph learning
methods to this framework deserve future investigation, espe-
cially for prototype or anchor learning [49], [52], [66], which
may reduce the complexity from O(n3) to O(n2), even O(n).
Moreover, the present work still requires postprocessing to get
the final clustering results, i.e., k-means. Interestingly, several
concise strategies, such as rank constraint [41], [48], [52] or
one-pass manner [25], provide promising solutions of directly
obtaining the clustering labels, these deserve further research.

IV. EXPERIMENT

This section conducts extensive experiments to evaluate the
performance of our proposed algorithm, including clustering
performance, running time, comparison with the KNN mech-
anism, kernel weights, visualization, convergence, parameter
sensitivity analysis, and ablation study.

A. Datasets

Table I lists 12 widely employed multi-kernel benchmark
datasets, including the following:

1) YALE1 includes 165 face gray-scale images from
15 individuals with different facial expressions or con-
figurations, and each subject includes 11 images.

2) MSRA derived from MSRCV1 [67], contains
210 images with seven clusters, including airplane,
bicycle, building, car, caw, face, and tree.

1http://vision.ucsd.edu/content/yale-face-database
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TABLE I

DATASETS SUMMARY

3) Caltech101-7 and Caltech101-mit2 originated from
Caltech101, including 101 object categories (e.g., “face,”
“dollar bill,” and “helicopter”) and a background cate-
gory.

4) PsortPos and PsortNeg3 are bioinformatics MKL
datasets used for protein subcellular localization
research.

5) BBC and BBCSport4 are two news corpora datasets
derived from BBC News, consisting of various docu-
ments corresponding to stories or sports news in five
areas.

6) ProteinFold5 is a bioinformatics dataset containing
694 protein patterns and 27 protein folds.

7) Handwritten6 and Mfeat7 are image datasets originated
from the UC Irvine Machine Learning (UCI ML) repos-
itory, including 2000 digits of handwritten numerals
(“0”–“9”).

8) Scene-158 contains 4485 gray-scale images, 15 envi-
ronmental categories, and three features [Generalized
Search Trees (GIST), Pyramid Histogram of Gradients
(PHOG), and Local Binary Patterns (LBP)].

All the precomputed base kernels within the datasets are
publicly available on websites and are centered and then
normalized following [63] and [64].

B. Compared Algorithms

Thirteen existing multiple kernel or graph-based algo-
rithms are compared with our proposed model, including the
following:

1) Avg-KKM combines base kernels with uniform weights.
2) MKKM [19] optimally combines multiple kernels by

alternatively performing KKM and updating the kernel
weights.

3) Localized Multiple Kernel k-means (LMKKM) [14]
can optimally fuse base kernels via an adaptive sample-
weighted strategy.

4) Multiple Kernel k-Means Clustering with Matrix-
Induced Regularization (MKKM-MR) [15] improve

2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3https://bmi.inf.ethz.ch/supplements/protsubloc
4http://mlg.ucd.ie/datasets/bbc.html
5mkl.ucsd.edu/dataset/protein-fold-prediction
6http://archive.ics.uci.edu/ml/datasets/
7https://datahub.io/machine-learning/mfeat-pixel
8https://www.kaggle.com/yiklunchow/scene15

the diversity of kernels by introducing a matrix-induced
regularization term.

5) Multiple Kernel Clustering with Local Alignment
Maximization (LKAM) [36] introduces localized ker-
nel maximizing alignment by constraining τ -nearest
neighbors of each sample.

6) Optimal Neighborhood Kernel Clustering
(ONKC) [16] regards the optimal kernel as the
neighborhood kernel of the combined kernel.

7) Self-weighted Multiview Clustering with Multiple
Graphs (SwMC) [57] eliminates the undesired hyper-
parameter via a self-weighted strategy.

8) Multi-view Clustering via Late Fusion Alignment
Maximization (LF-MVC) [17] aims to achieve max-
imal alignment of consensus partition and base ones via
a late fusion manner.

9) Simultaneous Global and Local Graph Struc-
ture Preserving for Multiple Kernel Clustering
(SPMKC) [51] simultaneously performs consensus ker-
nel learning and graph learning.

10) Simple Multiple Kernel k-means (SMKKM) [24]
proposes a novel min–max optimization based on kernel
alignment criterion.

11) Consensus Affinity Graph Learning for Multiple
Kernel Clustering (CAGL) [48] proposes a multi-
kernel graph-based clustering model to directly learn a
consensus affinity graph with rank constraint.

12) One Pass Late Fusion Multi-view Clustering
(OPLFMVC) [25] can directly learn the cluster labels
on the base partition level.

13) Localized Simple Multiple Kernel k-means
(LSMKKM) [40] is localized SMKKM in the
KNN method.

C. Experimental Settings
Regarding the benchmark datasets, it is commonly assumed

that the true number of clusters k is known. For the methods
involving k-means, the centroid of clusters is repeatedly and
randomly initialized 50 times to reduce its randomness and
report the best results. Regarding all the compared algorithms,
we directly download the public MATLAB code and carefully
tune the hyperparameters following the original suggestion.
For our proposed LSWMKC, the balanced hyperparameter
α varies in [20, 21, . . . , 210] by grid search. The clustering
performance is evaluated by four widely employed criteria,
including clustering accuracy (ACC), normalized mutual infor-
mation (NMI), purity, and adjusted rand index (ARI). The
experimental results are obtained from a desktop with Intel
Core i7 8700K CPU (3.7 GHz), 64-GB RAM, and MATLAB
2020b (64bit).

D. Experimental Results

Table II reports ACC, NMI, Purity, and ARI comparisons
of 14 algorithms on 12 datasets. Red bold denotes the optimal
results. Blue bold denotes the suboptimal results while “-”
denotes unavailable results due to overmuch execution time.
According to the experimental results, it can be seen that the
following holds.

1) Our proposed LSWMKC algorithm achieves optimal or
suboptimal performance on most datasets. Particularly,
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TABLE II

ACC, NMI, PURITY, AND ARI COMPARISONS OF 14 CLUSTERING ALGORITHMS ON 12 BENCHMARK DATASETS

CAGL can be regarded as the strongest competitor in
affinity graph multi-kernel clustering, our LSWMKC
still exceeds CAGL with a large margins improvement
of 13.34%, 16.26%, 20.41%, 8.09%, 25.00%, 9.20%,
10.00%, and 26.28% on the YALE, PsortPos, BBC,
BBCSport, PsortNeg, Handwritten, Mfeat, and Scene15
datasets, respectively, in terms of ACC, which well
demonstrates the superiority of our model over existing
methods.

2) Compared with LKAM and LSMKKM that utilize
the KNN mechanism to localize base kernel, our
LSWMKC still exhibits promising performance. Espe-
cially, LSMKKM can be regarded as the most compet-
itive method in multi-kernel clustering, the ACC of our
LSWMKC exceeds that of them 7.42%, 0.43%, 11.99%,
22.66%, 20.13%, 7.08%, 2.39%, 0.97%, 0.55%, and
4.78% on ten datasets, respectively, which sufficiently
illustrates the reasonableness of our model. Similarly,
NMI, Purity, and ARI of our algorithm also outperform
other methods on most datasets.

In summary, the quantitative comparison results can ade-
quately substantiate the promising capability of our LSWMKC
algorithm. The superiority of our algorithm can be attributed

to the following two aspects: 1) our MKC model first learns a
discriminative graph to explore the intrinsic local manifold
structures in kernel space, which can reveal the ranking
relationship of samples. The noise or outliers are sufficiently
removed, which directly serves for clustering. 2) An optimal
neighborhood kernel is obtained with naturally sparse property
and clear block diagonal structures, which can further denoise
the affinity graph. Our model achieves implicitly optimizing
adaptive weights on different neighbors with corresponding
samples in kernel space. Compared with the existing KNN
mechanism, the unreliable distant–distance neighbors in our
model can be removed or assigned small weights. The obtained
localized kernel is more reasonable in comparison with the
one from the KNN mechanism. Such two aspects conduce to
obvious improvement in applications.

E. Running Time Comparison

Fig. 2 plots the time-consuming comparison of 14 algo-
rithms. To simplify, the elapsed time of OPLFMVC is set
as the baseline and we take the logarithm of all results.
As our analysis that our LSWMKC shares the same computa-
tional complexity with MKKM, LMKKM, LKAM, ONKC,
SMKKM, SPMKC, CAGL, and LSMKKM, the empiricalAuthorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 07,2024 at 15:34:14 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Relative logarithm time-consuming comparison of 14 models on 12 datasets.

Fig. 3. Visualization of neighbor index and localized K(l) in KNN mechanism, the affinity graph Z, and localized K∗ of the proposed algorithm on BBCSport
and Mfeat datasets. (a) KNN (neighbor index). (b) KNN (K(l)). (c) Proposed (Z). (d) Proposed (K∗). (e) KNN (neighbor index). (f) KNN (K(l)). (g) Proposed
(Z). (h) Proposed (K∗).

TABLE III

ACC, NMI, PURITY, AND ARI COMPARISONS OF OUR PROPOSED ALGORITHM AND KNN MECHANISM ON 12 BENCHMARK DATASETS

Fig. 4. Comparison of the learned kernel weights of different algorithms on six datasets. Other datasets’ results are provided in the supplementary material.
(a) YALE. (b) BBC. (c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.
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Fig. 5. Evolution of data distribution by t-SNE on Handwritten dataset. (a) Initialized. (b) First iteration. (c) Fifth iteration. (d) Tenth iteration. (e) Twentieth
iteration.

Fig. 6. Evolution of affinity graph Z and neighborhood kernel K∗ learned by our proposed algorithm on Handwritten dataset. (a) Initialized (Z). (b) First
iteration (Z). (c) Third iteration (Z). (d) Fifth iteration (Z). (e) Tenth iteration (Z). (f) Initialized (K∗). (g) First iteration (K∗). (h) Third iteration (K∗). (i) Fifth
iteration (K∗). (j) Tenth iteration (K∗).

Fig. 7. Convergence of the proposed LSWMKC on six datasets. Other datasets’ results are provided in the supplementary material. (a) YALE. (b) BBC.
(c) BBCSport. (d) Handwritten. (e) Mfeat. (f) Scene15.

time evaluation also demonstrates that our LSWMKC costs
comparative and even shorter running time. More importantly,
our LSWMKC exhibits promising performance.

F. Comparing With KNN Mechanism
Recall our motivation to learn localized kernel by con-

sidering the ranking importance of neighbors in contrast to
the traditional KNN mechanism. Here, we conduct com-
parison experiments with the KNN mechanism (labeled as
KNN). Specifically, we tune the neighbor ratio τ varying in
[0.1, 0.2, . . . , 0.9] by grid search in average kernel space and
report the best results. As Table III shows, our algorithm
consistently outperforms the KNN mechanism. Moreover,
as Fig. 3 shows, for the KNN mechanism, we plot the
visualization of the neighbor index and K(l), for our model,
we visualize the learned affinity graph Z and neighborhood
kernel K∗ on the BBCSport and Mfeat datasets. Regarding

the KNN mechanism, the neighbor index involves noticeable
noise, especially on the BBCSport dataset, caused by the
unreasonable neighbor-building strategy. Such coarse local-
ized manner directly incurs the corrupted K(l) with much
noise. In contrast, the affinity graphs learned by our neigh-
bor learning mechanism achieve more precise block struc-
tures, which directly serve for learning localized K∗. All the
above-mentioned results sufficiently illustrate the effectiveness
of our neighbor-building strategy.

G. Kernel Weight Analysis
We further evaluate the distribution of the learned kernel

weights on 12 datasets. As Fig. 4 shows, the kernel weight
distributions of MKKM-MR, ONKC, and LKAM vary greatly
and are highly sparse on most datasets. Such sparsity would
incur clustering information across multiple views that cannot
be fully utilized. In contrast, the weight distributions of our
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Fig. 8. Parameter sensitivity study of hyperparameter α on BBC, BBCSport, and Caltech101-mit datasets. (a) BBC (ACC). (b) BBC (NMI). (c) BBCSport
(ACC). (d) BBCSport (NMI). (e) Caltech101-mit (ACC). (f) Caltech101-mit (NMI).

Fig. 9. Ablation study of γ by grid search on Caltech101-7 and BBCSport datasets. Other datasets’ results are provided in the supplementary material.
(a) Caltech101-7 (ACC). (b) Caltech101-7 (NMI). (c) Caltech101-7 (Purity). (d) BBCSport (ACC). (e) BBCSport (NMI). (f) BBCSport (Purity).

proposed algorithm are nonsparse on all the datasets, and
thus, the latent clustering information can be significantly
exploited.

H. Visualization

To visually demonstrate the learning process of the proposed
localized building strategy, Fig. 5 plots the t-SNE visual
results on the Handwritten dataset, which clearly shows the
separation of different clusters during the iteration. Moreover,
Fig. 6 plots the evolution of the learned affinity graph Z
and neighborhood kernel K∗ on the Handwritten dataset.
Clearly, the noises are gradually removed and the clustering
structures become clearer. Besides, K∗ can further denoise Z,
which exhibits more evident block diagonal structures. These
results can well illustrate the effectiveness of our localized
strategy.

I. Convergence and Parameter Sensitivity

According to our previous theoretical analysis, the con-
vergence of our LSWMKC model has been verified with
a local optimal. Here, experimental verification is further
conducted to illustrate this issue. Fig. 7 reports the evolvement
of optimization goals during iteration. Obviously, the objective
function values monotonically decrease and quickly converge
during the iteration.

We further evaluate the parameter sensitivity of α by grid
search varying in [20, 21, . . . , 210] on the BBC, BBCSport, and
Caltech101-mit datasets. From Fig. 8, we find the proposed
method exhibits much better performance compared with the
KNN mechanism in a wide range of α, making it practical in
real-world applications.

J. Ablation Study on Tuning γ by Grid Search

To evaluate the effectiveness of our learning γ man-
ner in Section III-D, we perform ablation study by tun-

ing γ in [2−5, 2−4, . . . , 25]. The range of α still varies in
[20, 21, . . . , 210]. Fig. 9 plots the results on the Caltech101-7
and BBCSport datasets. The red line denotes our reported
results. The green dashed line denotes the tuning results, for
simplicity, α is fixed at the index of the optimal results.

As can be seen, our learning manner exceeds the tuning
manner with a large margin in a wide range of γ. Although
tuning manner may achieve better performance at several
values of γ , it is mainly due to tuning by grid search
enlarges the search region of hyperparameter γ, it dramatically
increases the running time as well. In contrast, our learning
manner can significantly reduce the search region and achieve
comparable or much better performance.

V. CONCLUSION

This article proposes a novel localized MKC algorithm
LSWMKC. In contrast to traditional localized methods in the
KNN mechanism, which neglects the ranking relationship of
neighbors, this article adopts a heuristic manner to implicitly
optimize adaptive weights on different neighbors according to
the ranking relationship. We first learn a consensus discrimina-
tive graph across multiple views in kernel space, revealing the
latent local manifold structures. We further learn a neighbor-
hood kernel with more discriminative capacity by denoising
the consensus graph, which achieves naturally sparse property
and clearer block diagonal property. Extensive experimental
results on 12 datasets sufficiently demonstrate the superiority
of our proposed algorithm over the existing 13 methods. Our
algorithm provides a heuristic insight into localized methods
in kernel space.

However, we should emphasize the promising performance
obtained at the expense of O(n3) computational complexity,
which restricts applications in large-scale clustering. Intro-
ducing more advanced and efficient graph learning strategies
deserve future investigation, especially for prototype or anchor
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learning, which may reduce the complexity from O(n3) to
O(n2), even O(n). Moreover, the present work still requires
postprocessing to get the final clustering labels, i.e., k-means.
Interestingly, several concise strategies, such as rank constraint
or one-pass mechanism, provide promising solutions to this
issue, which deserves further research.
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Appendix of “Local Sample-weighted Multiple
Kernel Clustering with Consensus Discriminative

Graph”
Liang Li, Siwei Wang, Xinwang Liu, En Zhu, Li Shen, Kenli Li, and Keqin Li

✦

1 EXPERIMENT

1.1 Kernel Weight Analysis
Figure. 1 shows the kernel weight distribution of different algorithms on MSRA, Caltech101-7, PsortPos, ProteinFold,
PsortNeg, and Caltech101-mit datasets.
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Fig. 1: Comparison of the learned kernel weights of different algorithms on six datasets.
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1.2 Convergence and Parameter Sensitivity
Figure. 2 shows the convergence of our LSWMKC algorithm on MSRA, Caltech101-7, PsortPos, ProteinFold, PsortNeg, and
Caltech10-mit datasets.
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Fig. 2: The convergence of the proposed LSWMKC on six datasets.

1.3 Ablation Study on γ by Grid Search
Figure. 3 shows the ablation study of γ by grid search on BBC and Handwritten datasets.
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Fig. 3: Ablation study on γ by grid search on BBC and Handwritten datasets.
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