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Abstract— Contrastive learning has recently attracted plenty
of attention in deep graph clustering due to its promising
performance. However, complicated data augmentations and
time-consuming graph convolutional operations undermine the
efficiency of these methods. To solve this problem, we propose
a simple contrastive graph clustering (SCGC) algorithm to
improve the existing methods from the perspectives of network
architecture, data augmentation, and objective function. As to
the architecture, our network includes two main parts, that
is, preprocessing and network backbone. A simple low-pass
denoising operation conducts neighbor information aggregation
as an independent preprocessing, and only two multilayer
perceptrons (MLPs) are included as the backbone. For data
augmentation, instead of introducing complex operations over
graphs, we construct two augmented views of the same vertex by
designing parameter unshared Siamese encoders and perturbing
the node embeddings directly. Finally, as to the objective function,
to further improve the clustering performance, a novel cross-view
structural consistency objective function is designed to enhance
the discriminative capability of the learned network. Extensive
experimental results on seven benchmark datasets validate our
proposed algorithm’s effectiveness and superiority. Significantly,
our algorithm outperforms the recent contrastive deep clustering
competitors with at least seven times speedup on average. The
code of SCGC is released at SCGC. Besides, we share a collection
of deep graph clustering, including papers, codes, and datasets
at ADGC.

Index Terms— Attribute graph clustering, contrastive learning,
multilayer perceptrons (MLPs), self-supervised learning.

NOMENCLATURE

Notation Meaning
X ∈ RN×D Attribute matrix.
Xs ∈ RN×D Smoothed attribute matrix.
A ∈ RN×N Original adjacency matrix.
Â ∈ RN×N Adjacency matrix with self-loop.
I ∈ RN×N Identity matrix.
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D ∈ RN×N Degree matrix.
L ∈ RN×N Graph Laplacian matrix.
L̃ ∈ RN×N Symmetric normalized Laplacian matrix.
Zvk ∈ RN×d Node embeddings in kth view.
S ∈ RN×N Cross-view sample correlation matrix.
Z ∈ RN×d Clustering-oriented node embeddings.

I. INTRODUCTION

GRAPH learning [1], [2], [3], [4] is becoming increasingly
crucial in many applications like facial expression recog-

nition [5], video action recognition [6], and the recommen-
dation system [7] for its good hidden correlation exploiting
capability. Among all the directions in graph learning, a fun-
damental and challenging task, that is, deep graph clustering,
has recently attracted intensive attention [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20].

According to the learning mechanism, the existing deep
graph clustering methods can be roughly categorized into three
classes: generative methods [8], [21], [22], [23], [24], [25],
[11], [12], adversarial methods [9], [10], [26], and contrastive
methods [13], [14], [15], [16], [17], [18], [27]. In early
literature, the generative methods and adversarial methods
improve clustering performance by learning cluster-oriented
node representations and designing fake sample generation-
recognition mechanisms, respectively. However, since most of
these methods adopt a clustering guided loss function [28] to
force the generated sample embeddings to have the minimum
distortion against the prelearned clustering centers [8], [9],
[10], [11], [12], [25], [26], their clustering performance is
highly dependent on good initial cluster centers, thus leading
to manual trial-and-error pretraining. As a consequence, the
performance consistency, as well as the implementing con-
venience, is largely decreased. More recently, thanks to the
development of contrastive learning, more consistent and dis-
criminative contrastive loss functions are designed to replace
the clustering-guided loss function for network training. As a
result, the manual trial-and-error problem is alleviated, and
the clustering performance is improved [13], [14], [15], [16],
[17], [18], [27]. However, complicated data augmentations and
time-consuming graph convolutional operation undermine the
efficiency of these methods, making them computational time-
and space-consuming (see Section IV-D).

To solve these problems, we propose a simple contrastive
graph clustering (SCGC) method to improve the existing
methods from the aspect of network architecture, data aug-
mentation, and objective function. To our network architecture,
the backbone is designed with a Siamese network whose
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subbranch merely consists of the multilayer perceptron (MLP).
The neighborhood information aggregation process is con-
ducted independently before network training. In this manner,
we filter the high-frequency noise in attributes, thus improving
both the clustering performance and training efficiency (see
Sections IV-E1 and IV-D). For data augmentation, instead of
constructing two different views of the same node with com-
plex modification against graphs, we implement it by design-
ing parameter unshared Siamese encoders and perturbing the
node embeddings with Gaussian noise directly. Moreover,
we design a neighbor-oriented contrastive objective function
to force the cross-view similarity matrix to approximate the
self-looped adjacency matrix. By this setting, the network is
endowed with the ability to keep the cross-view structural
consistency, thus further improving the clustering performance
(see Section IV-E1). Benefiting from our simple architecture,
SCGC is free from pretraining and outperforms the recent
contrastive competitors with at least seven times speedup on
average. Meanwhile, we save about 59% GPU memory against
other contrastive methods on average (see Section IV-D).
The main contributions of this article are summarized as
follows.

1) We propose a simple, yet effective contrastive deep
graph clustering method termed SCGC. Benefiting from
its simplicity, SCGC is free from pretraining and saves
both time and space for network training.

2) A new data augmentation method, which conducts data
perturbation only in the enhanced attribute space, is pro-
posed. This fashion is verified to be compatible with the
existing contrastive methods.

3) We design a novel neighbor-oriented contrastive loss to
keep the structural consistency even across views, thus
improving the discriminative capability of our network.

4) Extensive experimental results on seven benchmark
datasets demonstrate the superiority and efficiency of
the proposed method against the existing state-of-the-
art deep graph clustering competitors.

II. RELATED WORK

A. Deep Graph Clustering

Graph neural networks (GNNs), which possess powerful
graph representation learning capability, have achieved impres-
sive performance in knowledge graph and graph learning.
Among various directions, deep graph clustering is a funda-
mental, yet challenging task that aims to reveal the underlying
graph structure and divides the nodes into several disjoint
groups. According to the learning mechanism, the existing
deep graph clustering methods can be roughly categorized
into three classes: generative methods [8], [11], [12], [21],
[22], [23], [24], [25], adversarial methods [9], [10], [26], and
contrastive methods [13], [14], [15], [16], [17], [18], [27],
[29], [30], [31], [32]. Our proposed method belongs to the
last category. We will review the generative methods and
adversarial methods in this section and detail the difference
between our proposed method and other contrastive methods
in Section II-B. More detailed information about deep graph
clustering can be found in the survey paper [33].

The pioneer graph clustering algorithm MGAE [22] embeds
nodes into the latent space with GAE [21] and then per-
forms clustering over the learned node embeddings. Sub-
sequently, DAEGC [8] and MAGCN [25] improve the
clustering performance of early works with the attention mech-
anisms [34], [35]. Besides, GALA [24] and AGC [23] enhance
the GAE by the symmetric decoder and the high-order graph
convolution operation, respectively. In addition, ARGA [9],
[10] and AGAE [26] improve the discriminative capability of
samples through adversarial mechanisms [36], [37]. Moreover,
SDCN [11] and DFCN [12] verify the effectiveness of the
attribute–structure fusion mechanisms to improve the cluster-
ing performance.

Although verified to be effective, since most of these
methods adopt a clustering guided loss function [28] to force
the learned node embeddings to have the minimum distortion
against the prelearned clustering centers, their clustering per-
formance is highly dependent on good initial cluster centers,
thus leading to manual trial-and-error pretraining [8], [9],
[10], [11], [12], [25], [26]. As a consequence, the perfor-
mance consistency, as well as the implementing convenience,
is largely decreased. Unlike them, our proposed method
replaces the clustering-guided loss function by designing a
novel neighbor-oriented contrastive loss function, thus getting
rid of trial-and-error pretraining.

B. Contrastive Deep Graph Clustering

Contrastive learning has achieved great success on
images [38], [39], [40], [41], [42], [43] and graphs [44], [45],
[46], [47], [48], [49], [50], [51] in recent years. Inspired by
their success, contrastive deep graph clustering methods [13],
[14], [15], [16], [17], [18], [27], [52] are increasingly pro-
posed.

Three key factors, that is, data augmentation, network
architecture, and objective function, significantly determine the
clustering performance of the contrastive methods. According
to these factors, we summarize the differences between our
proposed SCGC and other contrastive deep graph clustering
methods in Table I.

1) Data Augmentation: The existing data augmentations
in contrastive methods aim to build different views of the
same vertex by introducing complex operations over graphs.
Specifically, MVGRL [14] and DCRN [16] adopt the graph
diffusion matrix as an augmented graph. Besides, SCAGC [17]
perturbs the graph topology by randomly adding or dropping
edges. In addition, DCRN and SCAGC conduct augmentations
on node attributes by the attribute perturbation. Although
verified to be effective, these data augmentations are com-
plicated and still entangle the aggregation and transformation
during training, thus limiting the efficiency of the contrastive
methods. Different from them [14], [16], [17], our SCGC
constructs two augmented views of the same vertex by simply
designing parameter unshared Siamese encoders and perturb-
ing embeddings directly instead of introducing any complex
operations over graphs.

2) Network Architecture: To the network architecture,
SCAGC [17] and MGCCN [18] both encode nodes with the
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TABLE I
DIFFERENCES BETWEEN OUR PROPOSED SCGC AND OTHER CONTRASTIVE DEEP GRAPH CLUSTERING METHODS FROM PERSPECTIVES

OF DATA AUGMENTATION, NETWORK ARCHITECTURE, AND OBJECTIVE FUNCTION

shared GCN encoders [53]. Differently, MVGRL [14] adopt
two-parameter unshared GCN encoders and the shared MLP
as the backbone. In addition, DCRN [16] utilizes the autoen-
coder [54] and GCN encoder to embed augmented views into
the latent space. However, previous GCN encoders all entangle
the transformation and aggregation operation during training,
thus leading to high time costs. To solve this issue, AGE [13]
decouples these two operations in GCN by a graph Laplacian
filter [55] and one MLP. Different from AGE [13], we encode
the smoothed node attributes with two separated MLPs, which
have the same architecture but unshared parameters.

3) Objective Function: Third, for the objective function,
MVGRL [14] designs the InfoMax loss [38] to maximize
the cross-view mutual information between the node and
the global summary of the graph. Meanwhile, AGE [13]
designs a pretext task to classify the similar nodes and
the dissimilar nodes by the cross-entropy loss. Subsequently,
SCAGC [17], MCGC [15], and MGCCN [18] all adopt the
infoNCE loss [56] to pull together the positive sample pairs
while pushing away the negative sample pairs. Concretely,
based on similarity, MCGC defines the positive samples as the
k-nearest neighbors of the node while regarding other nodes
as negative samples. SCAGC designs the contrastive clustering
loss to maximize the agreement between representations of the
same cluster. MGCCN pulls close the embeddings of the same
node in different GCN layers and pushes away the embeddings
of different nodes. In addition, DCRN designs the MSE loss
to reduce the redundancy in the feature level and sample level.
Different from them, we design a novel neighbor-oriented
contrastive loss to keep the structural consistency even across
views, thus improving the discriminative capability of our
network.

III. METHODOLOGY

A. Notations and Problem Definition

Let V = {v1, v2, . . . , vN } be a set of N nodes with C classes
and E be a set of edges. In the matrix form, X ∈ RN×D

and A ∈ RN×N denote the attribute matrix and the original
adjacency matrix, respectively. Then G = {X, A} denotes
an undirected graph. The degree matrix is formulated as
D = diag(d1, d2, . . . , dN ) ∈ RN×N and di =

∑
(vi ,v j )∈E ai j .

The graph Laplacian matrix is defined as L = D − A. With
the renormalization trick Â = A + I in GCN [53], the
symmetric normalized graph Laplacian matrix is denoted as

L̃ = I− D̂−(1/2)ÂD̂−(1/2)
. The notations are summarized in the

Nomenclature.
Deep graph clustering aims to divide the nodes in the graph

into several disjoint groups in an unsupervised manner. Con-
cretely, a neural network F is first trained in an unsupervised
manner and encodes the nodes by exploiting node attributes
and structural information as follows:

E = F(A, X) (1)

where X and A denote the attribute matrix and the original
adjacency matrix, respectively. Besides, E ∈ RN×d is the
learned node embeddings, where N is the number of samples
and d is the number of feature dimensions. After that, a cluster-
ing algorithm C such as K-means [57], spectral clustering [58],
or clustering neural network [11] is adopted to divide learned
node embeddings E into k disjoint groups as follows:

8 = C(E) (2)

where 8 ∈ RN×k denotes the cluster membership matrix for
all N nodes.

B. Overall Framework

We propose an SCGC algorithm. The framework of SCGC
is shown in Fig. 1. It mainly consists of two components:
low-pass denoising operation and structural contrastive module
(SCM). In the following sections, we will detail low-pass
denoising operation, SCM, and the objective function.

C. Low-Pass Denoising Operation

Recent works [13], [59], [60] have demonstrated that the
Laplacian filter [55] can achieve the same effect as the
graph convolution operation [53]. Motivated by their success,
we introduce a low-pass denoising operation to conduct neigh-
bor information aggregation as an independent preprocessing
before training. In this manner, the high-frequency noise in
attributes will be filtered out efficiently.

Concretely, we introduce a graph Laplacian filter formulated
as

H = I − L̃ (3)

where L̃ denotes the symmetric normalized graph Laplacian
matrix. Subsequently, we stack up t-layer graph Laplacian
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Fig. 1. Illustration of the SCGC algorithm. In our proposed algorithm, we first preprocess the node attributes by the low-pass denoising operation. Then, the
SCM encodes the smoothed node attributes with merely two MLPs and constructs augmented views of node embeddings by designing parameter unshared
Siamese encoders and perturbing the node embeddings. Moreover, a novel neighbor-oriented contrastive loss is designed to keep the cross-view structural
consistency, thus improving the discriminative capability of the network.

filters as follows:

Xs =

(
t∏

i=1

H

)
X

= Ht X (4)

where Xs denotes the smoothed attribute matrix. Besides, Ht

denotes the stacked t-layer graph Laplacian filters, which can
filter out the high-frequency noise in node attributes.

Through this low-pass denoising operation, high-frequency
noise in attributes is filtered out, thus improving the cluster-
ing performance and training efficiency (see Sections IV-E1
and IV-D).

D. Structural Contrastive Module

In this section, we design the SCM to keep the structural
consistency even across two different views, thus enhancing
the discriminative capability of the network.

To be specific, we first encode the smoothed attributes Xs

with the designed parameter unshared MLP encoders and
then normalize the learned node embeddings with ℓ2-norm
as follows:

Zv1 = MLP1(Xs), Zv1 =
Zv1∣∣∣∣Zv1
∣∣∣∣

2

Zv2 = MLP2(Xs), Zv2 =
Zv2∣∣∣∣Zv2
∣∣∣∣

2

(5)

where Zv1 and Zv2 denote two augmented views of the learned
node embeddings. It is worth mentioning that MLP1 and
MLP2 have the same architecture but unshared parameters,
thus Zv1 and Zv2 would contain different semantic information
during training.

In addition, we further keep the difference between the two
views by simply adding the random Gaussian noise to Zv2

formulated as

Zv2 = Zv2 + N (6)

where N ∈ RN×d is sampled from the Gaussian distribution
N (0, σ ). In summary, we construct two augmented views
Zv1 and Zv2 by designing parameter unshared encoders and
perturbing the node embeddings directly instead of introducing
complex operations against graphs, thus improving the training
efficiency (see Section IV-D). Besides, recent works [61], [62],
[63] have indicated that the complex data augmentations over
graphs, like edge adding, edge dropping, and graph diffusion
could lead to semantic drift. A similar conclusion is verified
through experiments in Section IV-E2.

Subsequently, we design a novel neighbor-oriented con-
trastive loss to keep cross-view structural consistency. Con-
cretely, we calculate the cross-view sample similarity matrix
S ∈ RN×N between Zv1 and Zv2 formulated as

Si j = Zv1
i ·

(
Zv2

j

)T
∀ I, j ∈ [1, N ] (7)

where Si j denotes the cosine similarity between the i th node
embedding in the first view and the j th node embedding
in the second view. Then, we force the cross-view sample
similarity matrix S to be equal to the self-looped adjacency
matrix Â ∈ RN×N formulated as

L =
1

N 2

∑(
S − Â

)2

=
1

N 2

∑
i

∑
j

1
1
i j

(
Si j − 1

)2
+

∑
i

∑
j

1
0
i j S

2
i j

 (8)

where 1
1
i j denotes if Âi j = 1 and 1

0
i j denotes if Âi j = 0.

Here, we consider the cross-view neighbors of the same node
as the positive samples while regarding other nonneighbor
nodes as negative samples. Then we pull together the positive
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TABLE II
STATISTICS SUMMARY OF SEVEN DATASETS

samples while pushing away the negative samples. More
precisely, in (8), the first term forces the nodes to agree with
their neighbors even across two different views, while the
second term minimizes the agreement between the node and
its nonneighbors. This neighbor-oriented contrastive objective
function enhances the discriminative capability of our
network by keeping the cross-view structural consistency, thus
improving the clustering performance (see Section IV-E1).

E. Fusion and Clustering

In this section, we first fuse the two augmented views of
the node embeddings linearly formulated as

Z =
1
2
(Zv1 + Zv2) (9)

where Z ∈ RN×d denotes the resultant clustering-oriented
node embeddings. Then, we directly perform the K-means
algorithm [57] over Z and obtain the clustering results.

Algorithm 1 Simple Contrastive Graph Clustering
Input: The input graph G = {X, A}; The cluster number C ;
The iteration number I ; The graph Laplacian filter layer
number t ; The Gaussian noise’s standard deviation σ .

Output: The clustering result R.

1: Obtain the smoothed attributes Xs by applying t-layers
stacked graph Laplacian filters to the attributes X in Eq.
(3)-(4).

2: for i = 1 to I do
3: Encode Xs into two augmented views with parameter

un-shared Siamese MLP encoders and then normalize
them in Eq. (5).

4: Perturb node embeddings by adding the Gaussian
noise in Eq. (6).

5: Calculate cross-view sample similarity matrix S by
Eq. (7).

6: Force S to approach the self-looped adjacency Â and
calculate the neighbor-oriented contrastive loss L in
Eq. (8).

7: Fuse Zv1 and Zv2 to obtain Z in Eq. (9).
8: Update model by minimizing L with Adam optimizer.
9: end for

10: Obtain R by performing K-means over Z.
11: return R

F. Objective Function

The optimization objective of the proposed method is the
neighbor-oriented contrastive loss L in (8). We analyze the
time complexity of our proposed neighbor-oriented contrastive
loss. Given the sample number N and learned feature dimen-
sion d , the time complexity of calculating the cross-view
sample similarity matrix S is O(N 2d). Then, the time com-
plexity of aligning S with Â is O(N 2). Thus, the whole-time
complexity of the proposed loss is O(N 2d + N 2) = O(N 2d).
We minimize L with the widely used Adam optimizer [65]
during training. The detailed learning process of our proposed
SCGC is shown in Algorithm 1.

IV. EXPERIMENT

A. Dataset

To evaluate the effectiveness and efficiency of our proposed
SCGC, we conduct extensive experiments on seven benchmark
datasets, including CORA [13], CITESEER [13], Brazil Air-
Traffic (BAT) [66], Europe Air-Traffic (EAT) [66], USA
Air-Traffic (UAT) [66], Amazon Photo (AMAP) [16], and
CORAFULL [16]. The brief information of these datasets is
summarized in Table II.

B. Experimental Setup

All experimental results are obtained from the desktop
computer with the Intel Core i7-6800K CPU, one NVIDIA
GeForce RTX 3090 GPU, 64 GB RAM, and the PyTorch deep
learning platform.

1) Training Procedure: Our network is trained for
400 epochs until convergence by minimizing the contrastive
loss in (8) with the Adam optimizer [65]. After optimization,
we directly perform the K-means algorithm [57] on the
clustering-oriented node embeddings Z. To avoid the influence
of randomness, we conduct ten runs for all compared methods
and report the average values with standard deviations of four
metrics.

2) Parameter Settings: To MCGC [15], we run their source
code on merely the graph datasets in Table II for fairness. For
other baselines, we reproduce results by adopting their source
code with the original settings. In our proposed method, both
MLPs consist of a single 500-D embedding layer. The learning
rate of the optimizer is set to 1e-3 for CORA/BAT/EAT/UAT,
1e-4 for CORAFULL, 5e-5 for CITESEER, and 1e-5 for
AMAP. The layer number t of graph Laplacian filters is set
to 2 for CORA/CITESEER/CORAFULL, 3 for BAT/UAT,
and 5 for AMAP/EAT. The standard deviation σ of random
Gaussian noise is set to 0.01.

3) Metrics: To verify the superiority of our SCGC com-
pared with baselines, the clustering performance is evaluated
by four widely used metrics, that is, ACC, NMI, ARI, and
F1 [67], [68], [69], [70], [71], [72], [73], [74], [75].

C. Performance Comparison

To demonstrate the superiority of our proposed SCGC
algorithm, we compare SCGC with 13 baselines. Specifically,
K-means [57] is a classic clustering algorithm. Besides, two
representative deep clustering methods, that is, AE [54] and
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TABLE III
PERFORMANCE COMPARISON ON SEVEN DATASETS. ALL RESULTS ARE REPORTED WITH MEAN ± STD UNDER TEN RUNS. THE RED AND BLUE VALUES

INDICATE THE BEST AND THE RUNNER-UP RESULTS, RESPECTIVELY. OOM INDICATES OUT-OF-MEMORY DURING TRAINING

TABLE IV
TIME COST COMPARISON OF THE TRAINING PROCESS. ALL RESULTS ARE MEASURED IN SECONDS. THE BOLD AND UNDERLINED VALUES

INDICATE THE BEST AND THE RUNNER-UP RESULTS, RESPECTIVELY. AVG. INDICATES THE AVERAGE TIME COST ON SIX DATASETS.
OOM DENOTES OUT-OF-MEMORY DURING TRAINING

TABLE V
PREPROCESSING TIME ANALYSES IN THE PROPOSED METHOD ON SIX DATASETS

DEC [28], encode nodes with autoencoders and then perform
the clustering algorithm over the learned embeddings. Besides,
a simple spectral method SSGC [76] is designed to trade
off between low-pass and high-pass filter bands. In addition,
five classical deep graph clustering methods [8], [10], [11],
[12], [21] utilize the graph autoencoder [21] to learn the
node representation for clustering. Moreover, we test the clus-
tering performance of seven state-of-the-art contrastive deep
graph clustering methods including AGE [13], MVGRL [14],
SCAGC [17], MCGC [15], AFGRL [63], DCRN [16], and
GDCL [27], which design contrastive strategies to improve
the discriminative capability of samples.

In Table III, we report the clustering performance of all
compared methods on seven datasets. From these results,
we have four observations as follows. 1) Since K-means
is directly performed on the raw attributes, thus achieving
unpromising results. 2) The spectral-based method SSGC is
not comparable with ours since they overlook the strong
supervision information exploitation capability of contrastive
learning. 3) Our SCGC exceeds the representative deep clus-
tering methods [28], [54], [64] since they merely consider the

node attributes while overlooking the topological information
in graphs. 4) The recent contrastive methods [13], [14], [15],
[17] achieve suboptimal performance compared with our pro-
posed SCGC. The reason is that we improve the discriminative
capability of samples by keeping the cross-view structural
consistency in the proposed SCM. 5) Taking the average value
of four metrics into account, SCGC consistently outperforms
all baselines on seven datasets. For example, on the BAT
dataset, SCGC exceeds the runner-up ARGA [10] by 10.11%,
3.82%, 8.62%, and 11.01% increments with respect to ACC,
NMI, ARI, and F1, respectively.

Overall, the aforementioned observations have demonstrated
the superiority of our proposed SCGC. In the following
section, we will conduct experiments to verify the efficiency
of SCGC.

D. Time Costs and GPU Memory Costs

Time costs and GPU memory costs are two important
indicators for evaluating the efficiency of algorithms. In this
section, we conduct expensive experiments to demonstrate the
efficiency of SCGC.
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Fig. 2. GPU memory costs of six methods on four datasets.

Fig. 3. Ablation studies of unshared MLPs and Gaussian noise on six
datasets.

First, we test the training time of our SCGC and nine
baselines on six datasets. Concretely, the baselines contain
one deep clustering method DEC [28], one spectral-based
method SSGC [76], three classical deep graph clustering
methods [8], [11], [21], and seven contrastive methods [13],
[14], [15], [16], [17], [27], [63]. We run all methods on
the desktop platform with the Intel Core i7-6800K CPU,
one NVIDIA GeForce RTX 3090 GPU, and 64 GB RAM.
For the baselines, we adopt their original source code. For
fairness, all methods are trained with 400 epochs. From the
results in Table IV, we observe that our method consistently
achieves the fastest speed on six datasets. Significantly, SCGC
outperforms the recent contrastive deep clustering competitors
with at least seven times speedup on average. We summarize
two key reasons as follows. 1) The network architecture
of SCGC is simple and merely consists of two MLPs. 2)
Similar to [13], [49], [59],and [76], our method decouples the
GCN [53] and adopts the low-pass denoising operations as
an independent preprocessing to conduct neighbor information
aggregation, thus simplifying the training process. Besides, the

TABLE VI
ABLATION STUDIES OF LOW-PASS DENOISING OPERATION AND SCM.

RESULTS ARE REPORTED WITH MEAN ± STD UNDER TEN RUNS.
BOLD VALUES ARE THE BEST RESULTS

TABLE VII
PERFORMANCE COMPARISONS OF DIFFERENT AUGMENTATIONS ON SIX

DATASETS. ALL RESULTS ARE REPORTED WITH MEAN ± STD UNDER
TEN RUNS. THE BOLD VALUES INDICATE THE BEST RESULTS

preprocessing time of the proposed method is also important.
The preprocessing time is additionally tested with the same
device. From the results in Table V, it is observed that
the preprocessing does not take a long time (about 11.28%
additional time) in our proposed method.

Second, we conduct experiments to test GPU memory
costs of SCGC and five baselines including two classical
deep graph clustering methods [8], [11] and three contrastive
methods [13], [14], [17] on four datasets. From the results
in Fig. 2, two conclusions are obtained as follows. 1) SCGC
achieves comparable memory costs as the classical deep graph
clustering methods including DAEGC [8] and SDCN [11].
2) Compared to the contrastive methods [13], [14], [17],
our proposed method saves about 59% GPU memory on
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Fig. 4. Experimental results of transferring our augmentation fashion to
GCA [77], GRACE, and MVGRL [14].

Fig. 5. Sensitivity analysis of the layer number t of graph Laplacian filters
on six datasets.

average. We summarize two reasons as follows. 1) The
Siamese MLP encoders in SCGC are light. 2) Our proposed
method merely applies data augmentations in the latent space
instead of introducing complex space-consuming operations
over graphs [14], [17].

E. Ablation Studies

1) Effectiveness of Low-Pass Denoising Operation and
SCM: In this section, we conduct ablation studies to verify
the effectiveness of two components in our network, that is,
low-pass denoising operation and SCM. Here, we denote the
low-pass denoising operation as L for short. In Table VI,
“L + SCM” denotes our proposed SCGC. Besides, “(w/o)
L,” “(w/o) SCM,” and “(w/o) L and SCM” denote SCGC
without L, SCM, and both of them, respectively. From these
results, we have three observations as follows. 1) The low-pass
denoising operation could improve the performance of the
baseline by filtering out the high-frequency noise in node

Fig. 6. Sensitivity analysis of the standard deviation σ of Gaussian noise on
six datasets.

Fig. 7. Analysis of the layer number of MLPs in our SCGC.

Fig. 8. Analyses of hop number of neighbors in our proposed contrastive
loss on six datasets.

attributes. Concretely, the loss-pass denoising “L + SCM”
outperforms “(w/o) L” average 10.77% ACC on six datasets. 2)
Through our proposed SCM, the discriminative of samples is
enhanced, thus achieving better performance compared to the
baseline. We observe that the “L + SCM” outperforms “(w/o)
SCM” average 17.78% ACC. 3) Our method consistently
outperforms other variants by a large margin. Overall, the
aforementioned observations have verified the effectiveness of
the low-pass denoising operation and SCM in our proposed
SCGC.

2) Effectiveness of the Proposed Data Augmentation: In
our proposed SCGC, we construct augmented views of the
same node by designing parameter unshared Siamese MLP
encoders and adding Gaussian noise to node embeddings
instead of introducing complex operations over graphs. To ver-
ify the effectiveness of this new data augmentation fashion,
we first conduct expensive ablation experiments in Fig. 3.
Here, we denote “U,” “G,” and “U + G,” as the strategy
of setting parameter unshared MLPs, adding Gaussian noise
to node embeddings, and both of them, respectively. From
these results, we have two findings as follows. 1) These two
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Fig. 9. 2-D visualization on two datasets. The first row and second row correspond to CORA and AMAP, respectively.

simple strategies, which both aim to construct two different
views of the same node, improve the clustering performance.
2) The combination of these two strategies achieves the best
performance. In summary, we have verified the effectiveness
of our proposed data augmentation fashion through these
experimental results.

In addition, we compare our data augmentation fashion
with other classical graph data augmentations including edge
dropping [17], edge adding [17], and graph diffusion [14],
[16], [52]. Concretely, in Table VII, the data augmentation in
SCGC is replaced by randomly dropping 10% edges (“Drop”),
or randomly adding 10% edges (“Add”) or, graph diffusion
(“Diffusion”) with 0.20 teleportation rate. From the results,
we have two observations as follows. 1) The clustering per-
formance is harmed by random edge dropping and adding,
which may lead to semantic drift [61]. 2) Graph diffusion
could achieve comparable performance on CORA and AMAP
datasets while cannot compare with ours on other datasets.
It indicates that graph diffusion might change the underlying
semantics of graphs [63]. Overall, expensive experiments have
demonstrated the effectiveness of our proposed data augmen-
tation method.

To further verify the effectiveness and compatibility of
our proposed data augmentation, we conduct experiments to
transfer our augmentation fashion to other contrastive methods,
including MVGRL [14], GRACE, and GCA [77]. Specifically,
in these methods, we modify the original data augmentation
fashion by setting unshared Siamese encoders and adding
Gaussian noise to node embeddings. For the parameter set-
tings and objective functions, we keep them consistent with
the original literature. From the results in Fig. 4, we have
two conclusions as follows. 1) Our proposed augmentation
fashion is compatible with the existing contrastive methods.
2) Except for the performance of GRACE on EAT dataset and
MVGRL on the BAT dataset, the clustering performance of
these contrastive methods could be improved by our proposed
augmentation.

F. Sensitivity Analysis of Hyperparameters

For the hyperparameters, we provide the search space as
follows. For the learning rate, we search it in [1e−5, 1e−3

].
Besides, for the layer number t , we search it in {2, 3, 4, 5}.
Moreover, the standard deviation σ of the random Gaussian
noise is set to 0.01. In this section, we analyze the sensitivity
of the hyperparameters.

1) Sensitivity Analysis of Hyperparameter t: We conduct
experiments to investigate the influence of the layer number t
of graph Laplacian filters on our proposed SCGC. As shown
in Fig. 5, we have two observations as follows. 1) SCGC
could achieve promising performance when t ∈ [2, 3]. 2) Our
proposed model becomes insensitive to t when 3 < t ≤ 5.

2) Sensitivity Analysis of Hyperparameter σ : Besides,
we investigate the robustness of our proposed method SCGC
to hyperparameter σ , which controls the Gaussian noise to
the node embeddings Zv2 . From the results in Fig. 6, two
conclusions are obtained as follows. 1) Our SCGC is robust
to σ when σ ∈ [0.001, 0.1]. 2) The clustering performance
decreases drastically when σ > 0.1. The reason is that too
much noise would lead to node embedding semantic drift.
We set σ to 0.01 in our model.

3) Sensitivity Analysis of Layer Number of MLPs: We
analyze the layer number of MLPs in our proposed method in
this section. In Fig. 7, it is worth mentioning that we directly
perform the clustering algorithm on the smoothed attributes
when the layer number of MLPs is equal to zero. From these
results, we conclude as follows. 1) The MLP encoders are
effective in improving clustering performance. 2) Our method
could achieve the best performance when the layer number of
MLPs equals one.

4) Sensitivity Analysis of the Hop Number in the
Neighbor-Oriented Contrastive Loss: In this section, we con-
duct experiments by adopting different hop number neighbors
as the positive samples in our contrastive loss. As shown in
Fig. 8, the one-hop neighbors are the best choice. Besides,
the clustering performance is not sensitive to the hop number
when the hop number is between 3 and 5.

G. Visualization Analysis
To show the superiority of SCGC intuitively, we visualize

the distribution of learned embeddings of SCGC and six
compared baselines on CORA and AMAP datasets via the
t-SNE algorithm [78]. As shown in Fig. 9, visible results
demonstrate that SCGC better reveals the intrinsic clustering
structure compared with other baselines.

V. CONCLUSION

In this article, we propose a contrastive deep graph clus-
tering method termed SCGC to improve the existing methods
from the perspectives of network architecture, data augmen-
tation, and objective function. As to the architecture, our
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network mainly includes two parts, that is, preprocessing and
network backbone. Concretely, a simple low-pass denoising
operation conducts neighbor information aggregation as an
independent preprocessing. Through this operation, we filter
out the high-frequency noise in attributes in an efficient
manner, thus improving the clustering performance. Besides,
only two MLPs are included as the backbone. For data
augmentation, we construct different graph views by setting
parameter unshared encoders and perturbing the node embed-
dings instead of introducing complex operations over graphs.
Furthermore, we propose a novel neighbor-oriented contrastive
loss to keep cross-view structural consistency, thus enhancing
the discriminative capability of the network. Benefiting from
the simplicity of SCGC, it is free from pretraining and saves
both time and space for network training. Significantly, our
algorithm outperforms the recent contrastive deep clustering
competitors with at least seven times speedup on average.
Extensive experimental results on seven datasets have demon-
strated the effectiveness and superiority of SCGC. Besides, this
study makes deep graph clustering methods more possible to
be applied in many domains, like community detection [79],
document mining [80], metagenomic binning [81], single-cell
RNA sequencing [82], knowledge graph [83], [84], and so on.

The limitations of our proposed SCGC are summarized as
follows. 1) SCGC relies on the predefined number of clusters
and cannot recognize the cluster number automatically. 2)
SCGC is suitable for the middle graph with about 20 000
samples and cannot handle large-scale graph data. For the
limitations mentioned above, we plan to do some further
potential research as follows. 1) To make our method get rid
of the predefined cluster number, the density-based clustering
method or reinforcement learning can be potential solutions.
2) To make the method suitable for large-scale graph data,
we need to design the memory and time-efficient sampling
method and clustering method. 3) To make the method to be
suitable for both heterophily and homophily graphs.
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